(Set-1)

B.Tech - 6th Steel Structure

Full Marks: 70

Time: 3 hours

Q. No. 1 is compulsory and answer any five from the rest

The figures in the right-hand margin indicate marks
Use of IS 800-2007 is allowed

1. Answer the following questions:

 2×10

- (a) What is rolled steel section? Explain.
- (b) What do you mean by structural steel?
- (c) State four advantages of steel structures compared to other materials.
- (d) What do you mean by a built up section? What are its advantages?
- (e) What are the various types of connections

(Turn Over)

commonly adopted in steel structures? Which type is more preferable and why?

- (f) State the characteristics of HSFG bolts.
- (g) Distinguish between slab base and gusseted base.
- (h) A gantry girder consists of a plate girder. Is the statement correct? Comment.
- (i) What do you mean by a tacking bolt?
- (j) For smaller spacing of trusses, which type of purlins are used normally?
- 2. Design a lap joint between the two plates each of width 120 mm and of thickness, 12 mm using bearing type bolts. The joint has to carry a design load of 150 kN. Use Fe 410 grade of steel and M16 bolts of grade 4.6. Draw the c/s and the top view.
- 3. A tie member of a roof truss consists of 2 ISA $90 \times 60 \times 19$ mm, connected on the either side

of 12 mm gusset plate and is subjected to a factored tensile force of 300 kN. Design the welded connection considering the weld to be made in the workshop.

- 4. Calculate the tensile strength of a roof truss diagonal $100 \times 75 \times 10$ mm. The longer leg is connected to the gusset plate with 20 mm diameter bolts in one row. The no of bolts used is 4 and the edge distance is 30 mm. Assume a pitch of 40 mm.
- 5. If ISHB 400 @759 N per m is used as a column of effective length 4 m, with both ends pinned, calculate the design axial load capacity of the column. Use fy as 250 N per sq mm and fu as 410 N per sq mm.
- 6. (a) Classify the four different types of beam cross sections.
 - (b) If ISMB 400 @604 N/m is used as a beam, find out the class of section to which it belongs.

- 7. A steel column ISHB 250@537 N/m supports a total factored load of 1000 kN. Design a slab base for the column. The column is supported on a pedestal made of M20 concrete. Show the c/s of the slab base.
- 8. Write short notes on the following (any four):
 - (i) HSFG bolt of grade 8.8

 $2\frac{1}{2}\times4$

- (ii) Block shear failure
- (iii) Laced column
- (iv) Web crippling of beams
- (v) Elements of a plate girder.